Overview
An innovative genetic study of blood protein levels, led by researchers in the DMER programme at the MRC Integrative Epidemiology Unit (MRC-IEU) at the University of Bristol, has demonstrated how genetic data can be used to support drug target prioritisation by identifying the causal effects of proteins on diseases.
Working in collaboration with pharmaceutical companies, Bristol researchers have developed a comprehensive analysis pipeline using genetic prediction of protein levels to prioritise drug targets, and have quantified the potential of this approach for reducing the failure rate of drug development.
What we did
Genetic studies of proteins are in their infancy. The aim of this research, published in Nature Genetics, was to establish if genetic prediction of protein target effects could predict drug trial success. Dr Jie Zheng, Professor Tom Gaunt and colleagues from the University of Bristol, worked with pharmaceutical companies to set up a multi-disciplinary collaboration to address this scientific question.
Using a set of genetic epidemiology approaches, including Mendelian randomization and genetic colocalization, the researchers built a causal network of 1002 plasma proteins on 225 human diseases. In doing so, they identified 111 putatively causal effects of 65 proteins on 52 diseases, covering a wide range of disease areas. The results of this study are accessible via EpiGraphDB.
Paper
‘Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases’ by Jie Zheng et al in Nature Genetics.